
1280 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 4, APRIL 2016

Hybrid LUT/Multiplexer FPGA Logic Architectures
Stephen Alexander Chin, Student Member, IEEE, Jason Luu, Safeen Huda, and Jason H. Anderson, Member, IEEE

Abstract— Hybrid configurable logic block architectures for
field-programmable gate arrays that contain a mixture of lookup
tables and hardened multiplexers are evaluated toward the goal
of higher logic density and area reduction. Multiple hybrid
configurable logic block architectures, both nonfracturable and
fracturable with varying MUX:LUT logic element ratios are
evaluated across two benchmark suites (VTR and CHStone)
using a custom tool flow consisting of LegUp-HLS, Odin-II
front-end synthesis, ABC logic synthesis and technology mapping,
and VPR for packing, placement, routing, and architecture
exploration. Technology mapping optimizations that target
the proposed architectures are also implemented within ABC.
Experimentally, we show that for nonfracturable architectures,
without any mapper optimizations, we naturally save up to ∼8%
area postplace and route; both accounting for complex logic
block and routing area while maintaining mapping depth. With
architecture-aware technology mapper optimizations in ABC,
additional area is saved, post-place-and-route. For fracturable
architectures, experiments show that only marginal gains are
seen after place-and-route up to ∼2%. For both nonfracturable
and fracturable architectures, we see minimal impact on timing
performance for the architectures with best area-efficiency.

Index Terms— Field-programmable gate array (FPGA), hybrid
complex logic block, multiplexer (MUX).

I. INTRODUCTION

THROUGHOUT the history of field-programmable gate
arrays (FPGAs), lookup tables (LUTs) have been the

primary logic element (LE) used to realize combinational
logic. A K-input LUT is generic and very flexible—able to
implement any K -input Boolean function. The use of LUTs
simplifies technology mapping as the problem is reduced to a
graph covering problem. However, an exponential area price is
paid as larger LUTs are considered. The value of K between
4 and 6 is typically seen in industry and academia, and this
range has been demonstrated to offer a good area/performance
compromise [4], [5]. Recently, a number of other works have
explored alternative FPGA LE architectures for performance
improvement [6]–[10] to close the large gap between FPGAs
and application-specific integrated circuits (ASICs) [11].
In this paper, we propose incorporating (some) hardened

Manuscript received January 19, 2015; revised May 8, 2015; accepted
June 9, 2015. Date of publication September 17, 2015; date of current version
March 18, 2016.

S. A. Chin, S. Huda, and J. H. Anderson are with the Department
of Electrical and Computer Engineering, University of Toronto,
Toronto, ON M5S 3G8, Canada (e-mail: xan@ece.utoronto.ca;
safeen@ece.utoronto.ca; janders@ece.utoronto.ca).

J. Luu is with Altera Inc., Toronto, ON M5S 2X9, Canada (e-mail:
jluu@altera.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2015.2451658

multiplexers (MUXs) in the FPGA logic blocks as a means
of increasing silicon area efficiency and logic density.

The MUX-based logic blocks for the FPGAs have seen
success in early commercial architectures, such as the
Actel ACT-1/2/3 architectures, and efficient mapping to these
structures has been studied [12] in the early 1990s. However,
their use in commercial chips has waned, perhaps partly due
to the ease with which logic functions can be mapped into
LUTs, simplifying the entire computer aided design (CAD)
flow. Nevertheless, it is widely understood that the LUTs are
inefficient at implementing MUXs, and that MUXs are
frequently used in logic circuits. To underscore the ineffi-
ciency of LUTs implementing MUXs, consider that a six-
input LUT (6-LUT) is essentially a 64-to-1 MUX (to select 1
of 64 truth-table rows) and 64-SRAM configuration cells, yet it
can only realize a 4-to-1 MUX (4 data + 2 select = 6 inputs).

In this paper, we present a six-input LE based on a
4-to-1 MUX, MUX4, that can realize a subset of six-input
Boolean logic functions, and a new hybrid complex logic
block (CLB) that contains a mixture of MUX4s and 6-LUTs.
The proposed MUX4s are small compared with a 6-LUT
(15% of 6-LUT area), and can efficiently map all
{2, 3}-input functions and some {4, 5, 6}-input functions.
In addition, we explore fracturability of LEs—the ability to
split the LEs into multiple smaller elements—in both LUTs
and MUX4s to increase logic density. The ratio of LEs that
should be LUTs versus MUX4s is also explored toward
optimizing logic density for both nonfracturable and
fracturable FPGA architectures.

To facilitate the architecture exploration, we developed a
CAD flow for mapping into the proposed hybrid CLBs, created
using ABC [13] and VPR [14], and describe technology
mapping techniques that encourage the selection of logic
functions that can be embedded into the MUX4 elements.

The main contributions in this paper are as follows.
1) Two hybrid CLB architectures (nonfracturable and

fracturable) that contain a mixture of MUX4 LEs and
the traditional LUTs yielding up to 8% area savings.

2) Mapping techniques called NaturalMux and MuxMap
targeted toward the hybrid CLB architecture that
optimize for area, while preserving the original mapping
depth.

3) A full post-place-and-route architecture evaluation with
VTR7 [1], and CHStone [2] benchmarks facilitated
by LegUp-HLS [3], the Verilog-to-Routing project [1]
showing impact on both area and delay.

Compared with the preliminary publication [15], we have
performed transistor level modelling of the MUX4 LE, further
studied the fracturable architectures, and unified the open

1063-8210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CHIN et al.: HYBRID LUT/MUX FPGA LOGIC ARCHITECTURES 1281

source tool-flow from C through LegUp-HLS to the VTR
flow. Sparse crossbars (versus full crossbars in the previous
work) have also been included in our CLBs, increasing
modelling accuracy. The new transistor-level modelling of the
MUX4 also provides more accurate results as compared with
the previous work. Results have also been expanded with
the inclusion of timing results as well as larger architectural
ratio sweeps.

The remainder of this paper is organized as follows.
Section II outlines related work. Section III discusses the
proposed MUX4 LE, the variant used in the fracturable
architecture and the design of the hybrid complex logic block.
Section IV presents the technology mapping approaches to
target the proposed hybrid architecture. Section V shows how
we modeled the hybrid complex logic blocks for both the non-
fracturable and fracturable architectures in VPR. Section VI
discusses our evaluation methodology and provides the
evaluation results. Finally, we conclude with final remarks
in Section VII.

II. RELATED WORK

Recent works have shown that the heterogeneous
architectures and synthesis methods can have a significant
impact on improving logic density and delay, narrowing
the ASIC–FPGA gap. Works by Anderson and Wang with
“gated” LUTs [7], then with asymmetric LUT LEs [8], show
that the LUT elements present in commercial FPGAs provide
unnecessary flexibility.

Toward improved delay and area, the macrocell-based
FPGA architectures have been proposed [9], [10]. These
studies describe significant changes to the traditional
FPGA architectures, whereas the changes proposed here build
on architectures used in industry and academia [4]. Similarly,
and-inverter cones have been proposed as replacements for the
LUTs, inspired by and-inverter graphs (AIGs) [6].

Purnaprajna and Ienne [16] explored the possibility
of repurposing the existing MUXs contained within the
Xilinx Logic Slices [17]. Similar to this work, they use the
ABC priority cut mapper as well as VPR for packing, place,
and route. However, their work is primarily delay-based
showing an average speedup of 16% using only ten
of 19 VTR7 benchmarks.

III. PROPOSED ARCHITECTURES

A number of FPGA architecture variants were evaluated
and all are based on the basic MUX4 element described
in Section III-A. The design of LEs and considerations
for fracturability are addressed in Section III-B followed by
hybrid-CLB design in Section III-C. The areas of all proposed
architectures are discussed in Section III-D.

A. MUX4: 4-to-1 Multiplexer Logic Element

The MUX4 LE shown in Fig. 1 consists of a 4-to-1 MUX
with optional inversion on its inputs that allow the realization
of any {2, 3}-input function, some {4, 5}-input functions, and
one 6-input function—a 4-to-1 MUX itself with optional
inversion on the data inputs. A 4-to-1 MUX matches the input

Fig. 1. MUX4 LE depicting optional data input inversions.

pin count of a 6-LUT, allowing for fair comparisons with
respect to the connectivity and intracluster routing.

Naturally, any two-input Boolean function can be easily
implemented in the MUX4: the two function inputs can be
tied to the select lines and the truth table values (logic-0 or
logic-1) can be routed to the data inputs accordingly.
Or alternately, a Shannon decomposition can be performed
about one of the two variables—the variable can then feed
a select input. The Shannon cofactors will contain at most
one variable and can, therefore, be fed to the data inputs
(the optional inversion may be needed).

For three-input functions, consider that a Shannon decom-
position about one variable produces cofactors with at most
two variables. A second decomposition of the cofactors about
one of their two remaining variables produces cofactors with
at most one variable. Such single-variable cofactors can be
fed to the data inputs (the optional inversion may be needed),
with the decomposition variables feeding the select inputs.
Likewise, functions of more than four inputs can be
implemented in the MUX4 as long as Shannon decomposition
with respect to any two inputs produce cofactors with at most
one input.

Observe that input inversion on each select input is omitted
as this would only serve to permute the four MUX data inputs.
While this could help routability within the CLB’s internal
crossbar, additional inversions on the select inputs would not
increase the number of Boolean functions that are able to map
to the MUX4 LE.

B. Logic Elements, Fracturability, and
MUX4-Based Variants

Two families of architectures were created: 1) without
fracturable LEs and 2) with fracturable LEs. In this paper,
the fracturable LEs refer to an architectural element on
which one or more logic functions can be optionally mapped.
Nonfracturable LEs refer to an architectural element on which
only one logic function is mapped. In the nonfracturable
architectures, the MUX4 element shown in Fig. 1 is used
together with nonfracturable 6-LUTs. This element shares the
same number of inputs as a 6-LUT lending for fair comparison
with respect to the input connectivity.

For the fracturable architecture, we consider an
eight-input LE, closely matched with the adaptive logic

1282 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 4, APRIL 2016

Fig. 2. Fracturable 6-LUT that can be fractured into two 5-LUTs with
two shared inputs.

Fig. 3. Dual MUX4 LE that utilizes dedicated select inputs and shared data
inputs.

module in recent Altera Stratix FPGA families. A 6-LUT that
can be fractured into two 5-LUTs using eight inputs is shown
in Fig. 2. Two five-input functions can be mapped into this
LE if two inputs are shared between the two functions. If no
inputs are shared, two four-input functions can be mapped
to each 5-LUT. For the MUX4 variant, Dual MUX4, we use
two MUX4s within a single eight-input LE. In the
configuration, shown in Fig. 3, the two MUX4s are
wired to have dedicated select inputs and shared data
inputs. This configuration allows this structure to map two
independent (no shared inputs) three-input functions, while
larger functions may be mapped dependent on the shared
inputs between both functions.

An architecture in which a 4-to-1 MUX (MUX4) is
fractured into two smaller 2-to-1 MUXs was first considered.

Fig. 4. Hybrid CLB with a 50% depopulated intra-CLB crossbar depicting
BLE internals for a nonfracturable (one optional register and one output)
architecture.

Fig. 5. Hybrid CLB with a 50% depopulated intra-CLB crossbar depicting
BLE internals for a fracturable (two optional registers and two outputs)
architecture.

However, since a 2-to-1 MUX’s mapping flexibility is quite
limited (can only map two-input functions and the three-input
2-to-1 MUX itself), little benefit was added compared with
the overheads of making the MUX4 fracturable and poor area
results were observed.

C. Hybrid Complex Logic Block

A variety of different architectures were considered—the
first being a nonfracturable architecture. In the nonfracturable
architecture, the CLB has 40 inputs and ten basic LEs (BLEs),
with each BLE having six inputs and one output following
empirical data in prior work [4]. Fig. 4 shows this nonfrac-
turable CLB architecture with BLEs that contain an optional
register. We vary the ratio of MUX4s to LUTs within the
ten element CLB from 1:9 to 5:5 MUX4s:6-LUTs. The
MUX4 element is proposed to work in conjunction with
6-LUTs, creating a hybrid CLB with a mixture of 6-LUTs and
MUX4s (or MUX4 variants). Fig. 4 shows the organization of
our CLB and internal BLEs.

For fracturable architectures, the CLB has 80 inputs
and ten BLEs, with each BLE having eight inputs and
two outputs emulating an Altera Stratix Adaptive-LUT [18].
The same sweep of MUX4 to LUT ratios was also performed.
Fig. 5 shows the fracturable architecture with eight inputs to
each BLE that contains two optional registers. We evaluate
fracturability of LEs versus nonfracturable LEs in the context
of MUX4 elements since fracturable LUTs are common

CHIN et al.: HYBRID LUT/MUX FPGA LOGIC ARCHITECTURES 1283

TABLE I

LE TRANSISTOR MODELS WITH AREA GIVEN IN MINIMUM-WIDTH TRANSISTOR AREA AND DELAYS SCALED FOR A 40-nm PROCESS

in commercial architectures. For example, Altera Adaptive
6-LUTs in Stratix IV and Xilinx Virtex 5 6-LUTs can be
fractured into two smaller LUTs with some limitations on
inputs.

The crossbar for fracturable architectures are larger than the
nonfracturable architectures for two reasons. Due to the virtual
increase of LEs, a larger number of CLB inputs are required,
which increases crossbar size. Since there are now twice as
many outputs from the LEs, these additional outputs need to
also be fed back into the crossbar, also increasing its size.
Due to this disparity in crossbar size, fair comparisons cannot
be made between fracturable and nonfracturable architectures.
Therefore, in this paper, we compare nonfracturable hybrid
CLB architectures to a baseline LUT only nonfracturable
architecture and we compare fracturable hybrid CLB archi-
tectures to a baseline LUT-only fracturable architecture.

Sparse crossbars have been previously studied [19] and
in this paper, we model a 50% depopulated crossbar within
the CLB for intracluster routing for both nonfracturable and
fracturable architectures as compared with the preliminary
publication [15] that only modeled a full input crossbar.
Extended discussion on architecture modelling follows
in Section V.

D. Area Modelling

1) MUX4 Logic Element: Initial estimates of the MUX4 ele-
ment showed that the MUX4 is ∼10% the area of a 6-LUT
overall. A 4-to-1 MUX can be realized with
three 2-to-1 MUXs. Hence, the MUX4 element contains
seven 2-to-1 MUXs, four SRAM cells, and four inverters
in total (see Fig. 1). The optional inversion uses the four
SRAM cells, whereas the rest of the LE configuration is
performed through routing. In addition, the depth of the
MUX tree is halved compared with the 6-LUT, which has
six 2-to-1 MUXs on its longest paths. Conservatively,
assuming constant pass transistor sizing and that the area
of a 2-to-1 MUX and six transistor SRAM cell are roughly
equivalent, the MUX4 element has (1/16)th the SRAM area
and (1/8)th the MUX area of a 6-LUT.

These estimates were revised using transistor level mod-
elling of the circuit blocks. Transistor-level optimization of the
constituent circuit blocks of an FPGA requires an
understanding of the optimal area-delay tradeoffs for
each individual circuit block. This requires extracting a
representative critical path, which is a path whose composition
of blocks and topology will be similar to the critical path of
a specific design. Extracting the representative critical path
allows us to judge to what extent each individual block is
timing critical, which thus establishes an area-delay tradeoff

goals for each block. This is in line with the transistor-level
optimization tool developed previously [20]. We use the results
of prior work [20] to establish the optimal area-delay tradeoff
for 6-LUTs in a conventional island-style FPGA architecture
with typical architectural parameters. The resulting 6-LUT
delay serves as a point of reference for optimization for the
circuits considered in this paper: in the interest of maximizing
area reduction while allowing performance to be maintained
(ignoring the differences in cell counts between mapping to
a conventional LUT and the LEs proposed in this paper),
we attempt to match the delay of a 6-LUT while minimizing
the area of each of the variants of the MUX4 circuits.
Transistor level modelling and optimizations were based on
a predictive 22-nm high performance process [21], while the
area model presented in prior work [20] was used to estimate
the area of various circuit structures. With this methodology,
we determined an area-delay optimal 6-LUT has an area
of 930 minimum-width transistors, and a worst-case delay
of 261 ps. For the MUX4 cell and Dual MUX4 cell, a
minimum area and minimum delay cell was created. The
minimum area MUX4 cell has an area of 95 minimum-
width transistors and a delay of 204 ps; all transistors were
minimum-width in this case, and as the minimum area solution
for this circuit was able to meet (and improve upon) the
worst-case delay target of a 6-LUT. Similarly, the Dual MUX4
cell has an area of 249 minimum-width transistors while
meeting the worst-case delay requirement. However, we chose
to use the minimum delay design for both the MUX4 and
Dual MUX4 elements for the rest of the study as there is
not a significant increase in area over the minimum area
design.

Although the modelling was performed in the 22-nm
process, the standard VPR architecture we use has all para-
meters (routing delays, crossbar delays, and so on) scaled to a
40-nm process. In this standard VPR architecture, parameters
are compounded from a multitude of sources, some also in
other lithographic processes, and subsequently scaled to 40-
nm. Likewise, we linearly scale our delays by comparing the
delays of our 22-nm 6-LUT (261 ps) and the 6-LUT in the
standard architecture (398 ps). The delays for each design after
scaling to 40-nm are shown in Table I.

2) FPGA Area Model: Although determining the area of
a MUX4 element relative to a 6-LUT is important, we need
to also examine global FPGA area considering the number
of CLB tiles, area overheads within the CLB and routing
area per CLB. Throughout this paper, global FPGA area was
estimated assuming that, per tile, 50% of the area is intercluster
and intracluster routing, 30% of the area is used for LUTs,
and 20% for registers and other miscellaneous logic, following

1284 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 4, APRIL 2016

TABLE II

PER ARCHITECTURE, MINIMUM RELATIVE ARCHITECTURAL PERCENTAGE AREA, AND TOLERABLE PERCENTAGE

CLB INCREASE ASSUMING CONSTANT ROUTING DEMAND

Anderson and Wang [7] and a private communication [22].
It is important to note that this 50%–30%–20% model is an
estimate based on a traditional full FPGA design where-by
the routing and internal CLB crossbars are optimized
toward 6-LUTs. Production of an optimized FPGA utilizing
our new MUX4 elements would surely change said model.
However, optimizing the entire routing architecture toward
our MUX4 variants, measuring the routing architecture, and
closing the loop by creating a more accurate model is out of
the scope of this work.

Using this model, we can make some observations about
the hybrid CLB architecture. The 30% that normally would
account for ten 6-LUT LEs within the tile is now split between
the smaller MUX4 elements and 6-LUTs. For example,
in a 3 MUX4:7 6-LUT architecture, the area relative to
the reference area model can be estimated by deducing the
LogicChange% = (3 × 0.116 + 7)/10 (3 MUX4s each
at 0.116 the area of a 6-LUT and 7 6-LUTs), and multiplying
LogicChange% × 30% = 22% of total FPGA area.
If routing and miscellaneous area were held constant, our over-
all architecture area is Area3:7 = 50% + 20% + 22% = 92%
of the reference area—8% area savings. However, this is the
maximum area savings and it can only be realized by circuits
that have a natural (i.e., inherent) MUX4:LUT ratio greater
than or equal to the architecture ratio. In addition, since
any function that can be mapped to a MUX4 element can
also be mapped into a 6-LUT, all excess MUX4 functions
can be mapped to 6-LUTs. If the natural MUX4:LUT ratio
of the circuit is less than the architecture ratio, additional
CLBs will be required to supply more LUTs. In addition,
the number of CLBs may also increase during CLB packing
(C L BChange%) and routing demand may increase postplace-
ment and routing (RoutingChange%). In general, the model
used to estimate area relative to the baseline 6-LUT
only architecture (nonfracturable or fracturable) is as
follows:

Area% = CLBChange% × (50% × RoutingChange%

+ 30% × LogicChange% + 20%). (1)

Using this model, it is useful to calculate how many
additional CLBs can be tolerated for our new architectures.
Again, consider a 3:7 MUX4:LUT architecture. Disregarding
packing, placement, and routing effects

NumCLB3:7 ≤ 1/Area3:7 × NumCLBLUT

≤ 1.08 × NumCLBLUT . (2)

This means that an area win can only be achieved if the
number of CLBs needed to implement circuits in a hybrid

3:7 architecture is less than 1.08× the number needed for a
traditional LUT-only architecture.

Similarly, the calculation is performed for the fracturable
architecture with the larger Dual MUX4 element. A full table
for all architectures showing the architectural minimum area
and tolerable CLB increase is shown in Table II.

IV. TECHNOLOGY MAPPING USING ABC

ABC [13] was used for technology mapping, with modifica-
tions that allow for MUX4-embeddable function identification
and MUX2-embeddable function indentification in the case
of fracturable MUX4s and custom mapping. The internal
data structure used within the ABC is an AIG, where the
logic circuit is represented using 2-input AND gates with
inverters. Priority Cuts mapping in ABC (invoked with the
if command) [23] was modified to perform our custom
technology mapping. This mapper traverses the AIG from
primary inputs to primary outputs finding intermediate
mappings for internal nodes and finally the primary outputs,
using a dynamic programming approach. The priority cuts
mapper performs multiple passes on the AIG to find the best
cut per node. For depth-oriented mapping, the mapper first
prioritizes mapping depth then optimizes for area discarding
cuts whose selection would increase the overall depth of the
mapped network.

Based on this standard mapper, two mapper variants were
produced and evaluated. The first variant, NaturalMux,
evaluates and identifies internal functions that are
MUX4-embeddable, agnostic of the target architecture;
i.e., this flow uses the default priority cuts mapping and
performs a postprocessing step to identify MUX4-embeddable
functions. From this mapping, we can evaluate what area
savings are possible without any mapper changes. The second
variant MuxMap, area-weights the MUX4-embeddable cuts
relative to 6-LUT cuts, thereby establishing a preference for
selection/creation of MUX4-embeddable solutions.

In all mapper variants, cuts that are MUX4-embeddable
need to be identified, meaning that we must determine
whether the logic function implied by such cuts can be
implemented in a MUX4 LE. For LUTs that are identified as
MUX4-embeddable, we tag them in the mapped network
written out by ABC so that the VPR is able to pack these
elements into the hybrid-CLB architectures. The identification
function essentially performs a 2-level Shannon decomposition
for all combinations of select inputs—a maximum of C6

2 times
for a cut of size 6. For a logic function f , let Inputs(f)
represent its variable set, {x0, . . . , xi }, and let fxi x j represent
the Shannon cofactor of f with respect to its variables
xi and x j . Logic function f can be implemented in a MUX4

CHIN et al.: HYBRID LUT/MUX FPGA LOGIC ARCHITECTURES 1285

if and only if

|Inputs(f)| ≤ 3 (3)

or

∃xi , x j ∈ Inputs(f) such that

|Inputs(fxi x j)| ≤ 1

|Inputs(fxi x j)| ≤ 1

|Inputs(fxi x j)| ≤ 1

|Inputs(fxi x j)| ≤ 1. (4)

That is, any function up to three inputs can be implemented
in a MUX4, and for functions with four or more inputs, there
must exist two variables such that the Shannon cofactors with
respect to such variables have one or fewer inputs.

Likewise, conditions must hold true for
MUX2-embeddability using a 1-level Shannon decomposition.
Note that a 1-level Shannon decomposition technique has
previously been leveraged for mapping into asymmetric-LUT
architectures [8]. Any function up to two inputs can be
implemented in a MUX2. The only three-input function
that can be implemented in a MUX2 is a 2-to-1 MUX with
optional data input inversion. This limited flexibility was
quickly seen with the implementation of a MUX4 that was
fracturable into two MUX2s. These MUX2s do not provide
ample function diversity to justify the overheads of getting
the signals into and out of the hybrid CLB and led to the
creation of the Dual MUX4.

Compared with the preliminary publication [15], we have
also fully modeled all MUX inputs for wholly accurate
MUX4 input mapping. Previously, all the MUX data-inputs
were optimistically modeled to be equivalent and
interchangeable. Likewise for MUX select-inputs.
In this paper, each of the select input(s) and data inputs to the
MUX4 element is classified by the mapper on a pin-by-pin
basis, so that much more accurate packing can be performed
in the VPR.

A. NaturalMux

NaturalMux mapping invokes the standard priority cuts
mapper. Following mapping, we use the preceding approach
to determine if the LUT logic functions in the mapping are
MUX4-embeddable. This is needed so we can identify which
LUTs are MUX4-embeddable in the subsequent packing
stage.

B. MuxMap

In default ABC technology mapping, each LUT has a unit
area of 1. In our MuxMap approach, we use a lower weight
for the cases where logic functions are MUX4-embeddable.
Following the area model where 50% of an FPGA tile area is
routing, 30% is 6-LUTs and 20% is miscellaneous circuitry
(FFs + other), we can derive the weight of a MUX4 element
versus a 6-LUT. Dividing an FPGA tile into ten subtiles that
contain a single 6-LUT plus the 6-LUT’s associated routing
and miscellaneous circuitry, the 6-LUT or logic portion of
a subtile is 3% and the miscellaneous circuitry and routing

Fig. 6. MUX4 LE model.

Fig. 7. MUX4 mode in the 6-LUT element model.

is 7% of a complete tile. Recall from Section III-D that a
MUX4 element consumes 11.6% of the area of a 6-LUT.
Therefore, the area of a subtile with a MUX4 is 7.45% of the
entire tile, i.e., 7% routing and miscellaneous circuitry area
plus 11.6% × 3% logic area. The area ratio of a subtile with
a MUX4 versus a subtile with a 6-LUT would be roughly
7.34%/10% = 0.734% (assuming the routing and other
circuitry is held constant). Following this reasoning, we weight
MUX4s conservatively at 80% of a 6-LUT during technology
mapping. Experimental results shown in Section VI-A show
that this is a reasonable choice.

C. Select Mapping

Depending on the circuit, NaturalMux or MuxMap may be
preferred. In select mapping, the circuit is first mapped using
NaturalMux. Following from the discussion in Section III-D,
we know that if a circuit’s MUX4:LUT ratio is higher than
the architectural ratio, maximum area reductions are realized.
Therefore, if the natural ratio of the circuit is higher than
our target architectural ratio, we use this mapping. Otherwise,
if the natural ratio is lower than the architectural ratio, we rerun
the mapping with the MuxMap mapper to encourage the
selection of more MUX4-embeddable LEs. Note that the tech-
nology mapping run-time is a small fraction of that required
for placement and routing.

V. MODELLING USING VPR

VPR was used to perform architectural evaluation. The
standard ten 6-LUT CLB architecture in 40-nm included with
the VPR distribution was used for baseline modelling [1]. The
hybrid CLBs shown in Figs. 4 and 5 were modeled using the
XML-based VPR architectural language [1]. The snippet from
the architecture file for the physical block hardened
MUX4 element is shown in Fig. 6—this code specifies
a MUX4 as a six-input one-output blackbox to the VPR.
In addition, since all MUX4s can also be mapped to
the 6-LUTs, an additional mode was added to the 6-LUT
physical block, shown in Fig. 7. The mode concept allows

1286 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 4, APRIL 2016

the VPR packer to pack LUTs into LUTs (as usual), but also
enables MUX4s to be packed into the LUTs. The architectures
with CLBs having MUX4:LUT ratios from 1:9 to 5:5 were
created from the baseline 40-nm architectures with delays
obtained through circuit simulations of the MUX4 variants.

Importantly, we made minor modifications to the
VPR packing algorithm [1] itself, so that the MUX4 netlist
elements are preferred to be packed into the MUX4 LEs
in the architecture (while limiting packing MUX4 netlist
elements into LUTs). The modifications involved changing
the attraction function during the CLB packing. One change
was to ensure that the logic functions that were MUX4
embeddable were preferentially packed into a physical
MUX4 element and not into an LUT. Another was to
apply a negative weight on MUX4-embeddable functions
when the current CLB’s physical MUX4 elements are all
occupied—also preventing MUX4-embeddable functions from
being placed into the LUTs. Without this, the MUX4 netlist
elements might needlessly consume LUTs, which should
be reserved, where possible, for those netlist elements that
demand their flexibility. This becomes doubly important for
fracturable architectures, since their packing problem is more
complex. Without this modification, a significant CLB usage
increase was observed across all benchmark sets.

VI. EXPERIMENTAL EVALUATION

To determine the benefits of these new architectures,
evaluation was performed for each architecture using multiple
benchmark suites and mapping schemes. Two benchmarks
suites were used to evaluate our hybrid architectures:
1) VTR7 [1] and 2) CHStone [2]. Over the nonfracturable
and fracturable architecture families, two sets of experiments
were performed using the NaturalMux and MuxMap mapping
schemes. After both mappings were performed, the select
mapping was performed as described in Section IV-C.

While the VTR7 benchmarks are input to our flow
as Verilog, the CHStone benchmarks are input as C.
LegUp 3.0 [3] was used for C-to-Verilog HLS for these
CHStone benchmarks. Differing from our preliminary
work [15] (that had two separate tool flows), modifications
were made to both the LegUp and ODIN-II tools so that
CHStone benchmarks could be carried through the typical full
VTR flow (ODIN-II, ABC, VPR) using ODIN-II for
front-end synthesis. In the preliminary work [15],
Altera Quartus II is used for the front-end synthesis
thus producing an Altera-specific mapping for DSP blocks,
Memory blocks, and Carry Chains—all of which are not
supported by the standard VPR architectures. This restricted
us only to be able to make post-mapping estimates. In this
new tool-flow, ODIN-II is able to synthesize the Verilog
output from LegUp-HLS. ODIN-II, thereby produces the
compatible DSP and Memory blocks for our modified standard
FPGA architectures, allowing for post-place-and-route results
(previously nonexisting).

Lastly, the mcml and LU32PEEng benchmarks were omitted
from the VTR7 benchmark suite due to excessive runtime.

1) Mapping: Using ABC, we performed technology-
independent optimization using the standard resyn2 script

included with the ABC distribution [13]. Then, we per-
formed technology mapping with the priority cuts mapper
(if command), targeting an LUT size of 6. Our modified
priority cuts mapper was invoked using the if command with a
cut set size of 32 also limiting the maximum cut size to 6. The
initial unaltered baseline mapper was run without any mapping
to MUX4s, and then NaturalMux mapping was performed for
the identification of MUX4-embeddable functions. Our second
mapper, MuxMap, seeks to improve the mapping by reducing
the area cost of a MUX4-embeddable function within priority
cuts mapping.

After mapping with both mappers, we computed the
ratio of the number of MUX4-embeddable LEs to
the total number of LEs, i.e., the MUX4 percentage.
Based on this ratio for each circuit, we projected
the area benefits of hybrid architectures 1:9 to 5:5
MUX4:LUT ratios in the nonfracturable architectures.
The area projections were made assuming complete (full)
CLB packing, and the tile area breakdown described
in Section III-D (assuming no routing area change). The
results are shown in Table III and demonstrate the maximum
area savings to be had for each benchmark, since these
projections ignore the effects of packing, placement, and
routing constraints. For the fracturable architectures, this
prediction is made difficult, since pairing of functions to be
packed into fractured LEs is largely determined by pin-sharing
on the LE inputs—a packing constraint. No predictions are
made for the fracturable architectures, however, packed,
placed, and routed results for the fracturable architectures are
discussed in Section VI-B.

The MuxMap improves mapping by increasing the number
of MUX4-embeddable logic functions by reducing the area
cost of a MUX4-embeddable function, thereby encouraging
the mapper to create more MUX4-embeddable functions,
increasing the MUX4-embeddable ratio of each circuit overall.
However, the improvements in the ratio may come at the cost
of a higher total number of LEs. If there is a significant
increase in LEs (greater than the limits shown in Table II),
no area savings may be seen. Fig. 8 shows a sweep of the
weighting of MUX4-embeddable LEs from 0% cost to 100%
cost of a 6-LUT over the VTR7 suite; and the projected area is
shown on the vertical axis (normalized to a traditional
LUT-based architecture). Area is minimized for more
aggressive architectures (5:5 and 4:6) around a weight-
ing of 50%–60% whereas less aggressive architectures
(3:7, 2:8, 1:9) do not benefit at all from a reduced weighting.
This can be seen as the minimum area for a weighting
of 100%.

As the number of LEs grow, packing, placement, and
routing effects play a greater role in the final circuit area.
In the remainder of this paper, a weighting of 80% was chosen
for the MuxMap as this gave a good balance of additional
MUX4-embeddable LEs. Lower weightings result in many
additional LEs, exacerbating the losses due to packing,
placement, and routing.

The left-hand side of Table III shows the projected area
results for NaturalMux mapping as well as the baseline
statistics of each benchmark in the two benchmark suites.

CHIN et al.: HYBRID LUT/MUX FPGA LOGIC ARCHITECTURES 1287

TABLE III

POSTMAPPING AREA ESTIMATE FOR VTR7 AND CHSTONE BENCHMARKS ASSUMING COMPLETE CLB PACKING

AND NO INCREASE IN ROUTING DEMAND

Fig. 8. MuxMap varying the weight from zero area to equal 6-LUT area
for different MUX4:LUT architectures. A weight equal to the LUT area is
equivalent to the NaturalMux mapping. As the MUX4 area weighting is
increased for some architecture ratios (e.g., 5:5 and 4:6), an increase in relative
area is seen due to unbalanced circuit and architecture MUX4:LUT ratios.

The right-hand side shows projected area results for the
MuxMap mapping with a weighting of 0.8. For both
of the mappers, we show projected results for the architectures
with ratios ranging from 1:9 to 5:5. Again, Table II shows
the lower bound architectural areas relative to a traditional
6-LUT-based architecture for the configurations tested and

this lower bound can only be achieved when the natural
MUX4-embeddable ratio exceeds the architecture ratio.
When the natural ratio is lower than the architecture ratio,
more CLBs are required, increasing area. Table III shows the
lower bound on area for each benchmark and nonfracturable
architecture, since this projection assumes perfect packing,
placement, and routing of each benchmark on each
architecture. Looking at the left half of Table III, the baseline
number of LEs along with the natural MUX4-embeddable ratio
is given along with projected areas for each architecture for
NaturalMux.

The VTR7 benchmarks are projected to perform well, with
a high natural MUX4-embeddable ratio of 40% over all
benchmarks. For the VTR7 benchmarks, a 3:7 architecture
seems to be the best architecture for NaturalMux mapping,
yielding ∼7% projected area reduction postmapping. MuxMap
shows an increase in MUX4-embeddable ratio to 46% over
all benchmarks; however, the increase in LE count associ-
ated with MuxMap leads to worse projected area results per
architecture versus NaturalMux, except for the 4:6 and 5:5
architectures. Employing the Select mapping scheme yields
marginally better area reduction for the best architecture
ratio, 3:7 (∼1% above the architectural minimum).

The CHStone benchmarks all show large percentages
of MUX4-embeddable functions using the NaturalMux
mapper, 55%. In fact, the percentage of MUX4-embeddable
functions is so large that in nearly all cases, the architectural
minimum area is reached. In this case, the MuxMap mapper

1288 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 4, APRIL 2016

Fig. 9. Input-size distribution of VTR7 benchmarks with the
MUX4-embeddable LEs in blue (light gray) and LUTs in purple (dark gray).

Fig. 10. Input-size distribution for CHStone benchmarks with the
MUX4-embeddable cuts in blue (light gray) and LUTs in purple (dark gray).

and Select schemes have no further improvements. From
these postmapping estimates, it seems as though even a very
aggressive 5:5 architectural ratio for the CHStone suite may
be the best as we reach the architectural minimum area for
the nonfracturable 5:5 architecture. This variation between
benchmark suites is interesting and the CHStone benchmarks
suiting more aggressive architectures could be a function of
how LegUp-HLS transforms the CHStone benchmarks, written
in C, to hardware. Again, we see that different architectural
conclusions can be made based on the benchmark circuits
employed in an architectural study [24].

We can also examine how the weighting within the
MuxMap mapper affects the used input-size distribution for
the LUTs in the circuits versus the NaturalMux mapper. The
input-size distributions for the NaturalMux and MuxMap
mappings are shown in Figs. 9 and 10 for VTR7 and CHStone
benchmarks, respectively. Each bar in the distribution shows
the portion of LEs (with a given number of used inputs) that
are MUX4-embeddable (in light-blue). The VTR suite has
only a small percentage of functions with more than three
inputs that are naturally MUX4-embeddable (∼10%). With
MuxMap, the percentage of larger five- and six-input functions
is somewhat reduced with these functions being implemented
mostly as three- or four-input MUX4-embeddable functions.
Looking at the six-input functions specifically, we also observe
that very few are MUX4-embeddable. Recall that the only
six-input logic function that is MUX4-embeddable is a
4-to-1 MUX (with possible data input inversions).
Two- and three-input MUX4-embeddable functions are also
quite abundant in both the VTR7 and CHStone benchmarks,
comprising the majority of all the MUX4-embeddable
functions. Concerning these small functions, note that
over 35% of functions in the VTR7 circuits and 40% in
CHStone have three or fewer inputs (Fig. 9), which bodes

well for the proposed hybrid architectures. In addition,
in both benchmark suites, MuxMap encourages a decrease
in five-input elements and an increase in MUX4-embeddable
three-input elements.

A. Nonfracturable Architectures: Packing, Place, and Route

Of course, the previous postmapping results do not consider
the possible impact of the addition of MUX4 elements to
the FPGA architecture on packing, placement, and routabil-
ity. Therefore, the mapped netlists were packed, placed,
and routed, using VPR, into the architectures discussed in
Section V. The final area estimates in Tables IV and V
show the area reduction relative to the baseline mapper and a
traditional nonfracturable 6-LUT architecture. We use the area
equation shown in Section III for these estimates. VPR was
configured to find minimum channel width with timing driven
routing. For all benchmarks, five different placement seeds
were used to account for the random effects of placement on
final routing. For C L BChange%, we use the change in packed
CLBs over the baseline. For RoutingChange%, we use the
change in routing area per logic tile (measured in minimum-
width transistors) reported by VPR. Finally, we compute
LogicChange% according to the chosen hybrid CLB archi-
tecture ratio—this is constant for a given architecture and
represents the physical reduction in LE area.

Tables IV and V show the results for each benchmark using
the NaturalMux and MuxMap mapping schemes respectively,
over all nonfracturable architectures. In Tables IV and V,
the baseline CLB count is shown with the natural
MUX4-embeddable LE ratio. For each architecture, the
percentage change in CLBs and routing with respect to the
baseline 6-LUT-only architecture is shown with area based on
the model in Section III-D. For each benchmark suite, we take
the geomean area across all benchmarks in the suite. Each
of these final mean relative area numbers is shown in bold.
Table V has additionally a row showing the select geomean,
which is the result of applying the select scheme between both
mappers for each architecture.

Overall, we see increases in packed CLBs for both
benchmark suites, but for most architectures, this gain is offset
by the smaller hybrid CLB area. Looking at the minimum
geomean areas in Table IV, we can see that the best archi-
tecture suited toward NaturalMux mapping is the 2:8 for
VTR7 and 4:6 for CHStone. But for the MuxMap mapping
scheme in Table V, the VTR7 performs best on a
3:7 architecture and CHStone performs the best on a 5:5
architecture. However, the best results overall are shown with
Select. For Select mapping, the VTR7 on a 3:7 architecture
is the best with ∼4% area reduction, but it is down four per-
centage points from the postmap estimate. CHStone performs
best in a 4:6 architecture at ∼9% area reduction. The postmap-
ping projections again suggested 3% points better area for the
5:5 architecture.

For the nonfracturable architectures, a ratio of 3:7 seems
fitting as we see gains for both benchmark suites—though not
full gains for the CHStone.

CHIN et al.: HYBRID LUT/MUX FPGA LOGIC ARCHITECTURES 1289

TABLE IV

NONFRACTURABLE ARCHITECTURE: POSTPLACE AND ROUTE RESULTS SHOWING ARCHITECTURAL SWEEPS BETWEEN ZERO (BASELINE) TO

FIVE MUX4 LEs OUT OF TEN, FOR FRACTURABLE HYBRID-CLB ARCHITECTURES, USING THE NATURALMUX MAPPING SCHEME.

ALL BENCHMARKS WERE AVERAGED OVER FIVE PLACEMENT SEEDS

TABLE V

NONFRACTURABLE ARCHITECTURE: POSTPLACE AND ROUTE RESULTS SHOWING ARCHITECTURAL SWEEPS BETWEEN ZERO (BASELINE) TO

FIVE MUX4 LEs OUT OF TEN, FOR FRACTURABLE HYBRID-CLB ARCHITECTURES USING THE MUXMAP MAPPING SCHEME.

ALL BENCHMARKS WERE AVERAGED OVER FIVE PLACEMENT SEEDS

1290 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 4, APRIL 2016

TABLE VI

FRACTURABLE ARCHITECTURE: POSTPLACE AND ROUTE RESULTS SHOWING ARCHITECTURAL SWEEPS BETWEEN ZERO (BASELINE) TO

FIVE MUX4 LEs OUT OF TEN, FOR FRACTURABLE HYBRID-CLB ARCHITECTURES, USING THE NATURALMUX MAPPING SCHEME.

ALL THE BENCHMARKS WERE AVERAGED OVER FIVE PLACEMENT SEEDS

TABLE VII

FRACTURABLE ARCHITECTURE: POSTPLACE AND ROUTE RESULTS SHOWING ARCHITECTURAL SWEEPS BETWEEN ZERO (BASELINE) TO

FIVE MUX4 LEs OUT OF TEN, FOR FRACTURABLE HYBRID-CLB ARCHITECTURES, USING MUXMAP MAPPING SCHEME.

ALL THE BENCHMARKS WERE AVERAGED OVER FIVE PLACEMENT SEEDS

CHIN et al.: HYBRID LUT/MUX FPGA LOGIC ARCHITECTURES 1291

TABLE VIII

GEOMEAN FMAX CHANGE FOR EACH ARCHITECTURE FOR SELECT

MAPPING RELATIVE TO THE STANDARD TEN 6-LUT

ARCHITECTURE FOR EACH BENCHMARK SUITE

B. Fracturable Architectures: Packing, Place, and Route

The final area estimates in Tables VI and VII show the
area reduction relative to the baseline mapper and a traditional
fracturable 6-LUT architecture. The same experimental
methodology used for nonfracturable architectures is used for
the fracturable architectures.

The fracturable architectures, overall, show vastly differing
performance compared with the nonfracturable architectures.
Using NaturalMux mapping shown in Table VI, the best
architectures are the 1:9 architecture for VTR7 and the
2:8 architecture for CHStone. Only up to ∼2% area savings
are seen for NaturalMux mapping for fracturable architectures.
Using MuxMap mapping (Table VII), the best architectures
are the 1:9 architecture for VTR7 but now the 3:7 architecture
for CHStone. Again, only up to ∼2% area savings are seen
for MuxMap mapping for fracturable architectures. For Select
mapping, we see marginal gains and show the best overall
result for both the VTR7 and CHStone benchmark suites.
A 1:9 architecture looks best for VTR7 at an overall 2.1%
area reduction and a 2:8 or 3:7 looks best for the CHStone
suite at 2.6% and 2.7% reduction, respectively.

Recall that the fracturable 6-LUT architecture presented is
very flexible—it can map two functions with up to four disjoint
inputs each. This flexibility is quite powerful as seen with the
reduced performance of the fracturable architectures versus
the nonfracturable architectures. The Dual MUX4 element can
only map some combinations of three and four input functions,
since four inputs to the LE are shared (see Fig. 3). The
constraints (pin sharing) on the input pins of the Dual MUX4
restrict many pairs of functions, usually two to four inputs, to
be mapped, whereas the fracturable LUT is able to map any
pair of functions up to four-inputs each.

Looking again at the function input distributions
in Figs. 9 and 10, we can see that over 50% of the functions
in each benchmark suite is four-input or smaller. Thus, these
four-input or smaller functions are ideal candidates for
mapping into the fracturable LUTs, allowing the fracturable
LUT to perform very well in terms of logic density. Also
from the distributions, there are not many five- or six-input
function that can be mapped to MUX4 elements. Thus,
most of these elements also require LUTs leaving not many
functions left to be mapped to Dual MUX4 elements.

C. Performance

The worst-case delay for both the 6-LUT and MUX4
variants was used to determine the longest delay and FMax.
Table VIII shows the geomean FMax change for Select map-
ping for nonfracturable and fracturable architectures for each
benchmark suite. Using the Select mapping results, we are

taking the best mapping scheme based on area and then mea-
suring performance. Over all tested architectures, we observed
between a 2% improvement to a 7% slowdown. The general
trend seems to be that the more aggressive architectures see
more slowdown especially for fracturable architectures.

For the nonfracturable architecture, the best area savings
were seen in 3:7 and 4:6 ratios. The performance is relatively
constant for the 3:7 architecture, while the 4:6 architecture
the VTR7 benchmarks have a 2.5% hit and the CHStone
benchmarks have a 2.5% gain.

For fracturable architectures, we saw the best area savings in
a 1:9 architecture for VTR7 and for performance, we now see
a 1% slowdown. For CHStone, based on area, the preferable
architecture was a toss-up between a 2:8 and 3:7 architecture
but, here, we see that a 2:8 architecture is preferable, since we
take a smaller performance hit of 1.5%.

Overall, the performance impact on the architectures that
yielded the best area savings were minimal for fracturable
architectures, while some gains were seen for nonfracturable
architectures.

D. Discussion

The results show that relative to baseline nonfracturable
LUT-based LE architectures, the inclusion of hardened
MUX4s to form a hybrid LUT/MUX4-based CLB provides
an area benefit of up to 8.9% and a 2.5% increase in FMax
(for the case of the CHStone circuits, 4:6 architecture and
Select mapping). In essence, this result reaffirms conventional
wisdom that LUTs are in a sense over-engineered for many
logic functions that regularly occur in application circuits. For
such functions, one can get away with using a LE with reduced
flexibility.

With respect to a baseline of fracturable LUT-based
elements, the incorporation of MUX4s offers at most a modest
area benefit of 2.6% with a small performance hit of 1.5%
(CHStone, with a 2:8 ratio). The notion of making LUTs frac-
turable is, in fact, a feature whose purpose is rooted in the
overengineered nature of nonfracturable LUTs: fracturable
LUTs permit area recovery for implementing small logic
functions. Thus, the underlying purpose of making LUTs frac-
turable is not orthogonal to the purpose of incorporating
MUX4s, and hence, it is perhaps unsurprising that MUX4s
provide a small benefit in this case. Nevertheless, we consider
the results encouraging in that they point out that the LUT,
while being the long-standing lynchpin of FPGA logic, may
not be the only circuit structure capable of delivering high
logic density. Other structures, such as MUXs, are worthy of
consideration.

VII. CONCLUSION

We have proposed a new hybrid CLB architecture con-
taining MUX4 hard MUX elements and shown techniques
for efficiently mapping to these architectures. Weighting of
MUX4-embeddable functions with our MuxMap technique
combined with a select mapping strategy provided aid to
circuits with low natural MUX4-embeddable ratios. We also
provided analysis of the benchmark suites postmapping, dis-
cussing the distribution of functions within each benchmark

1292 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 4, APRIL 2016

suite. From our first set of experiments with nonfracturable
architectures, area reductions of up to 8% were seen for
a 4:6 MUX4:LUT architecture in the CHStone suite with
a 2:8 architecture most viable for the VTR suites
with ∼5% area savings. Our second set of experiments
with fracturable architectures showed that the flexibility of a
fracturable LUT is very powerful, reducing the impact of
the MUX4 LEs, yielding smaller ∼2%–3% area savings
over the VTR7 and CHStone benchmark suites with less
aggressive 2:8 and 1:9 architectures, respectively. Interestingly,
we again found that different architectural conclusions can
be made based on the benchmark circuits employed in an
architecture study [24], since CHStone benchmarks generally
preferred more aggressive MUX4:LUT architecture ratios.
The CHStone benchmarks being high-level synthesized with
LegUp-HLS also showed marginally better performance and
this could be due to the way LegUp performs HLS on
the CHStone benchmarks themselves. Overall, the addition
of MUX4s to FPGA architectures minimally impact FMax
and show potential for improving logic-density in nonfrac-
turable architectures and modest potential for improving logic-
density in fracturable architectures.

REFERENCES

[1] J. Rose et al., “The VTR project: Architecture and CAD for FPGAs
from verilog to routing,” in Proc. ACM/SIGDA FPGA, 2012, pp. 77–86.

[2] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and
quantitative analysis of the CHStone benchmark program suite for
practical C-based high-level synthesis,” J. Inf. Process., vol. 17,
pp. 242–254, Oct. 2009.

[3] A. Canis et al., “LegUp: High-level synthesis for FPGA-based
processor/accelerator systems,” in Proc. ACM/SIGDA FPGA, 2011,
pp. 33–36.

[4] E. Ahmed and J. Rose, “The effect of LUT and cluster size on deep-
submicron FPGA performance and density,” IEEE Trans. Very Large
Scale Integr. (VLSI), vol. 12, no. 3, pp. 288–298, Mar. 2004.

[5] J. Rose, R. Francis, D. Lewis, and P. Chow, “Architecture of field-
programmable gate arrays: The effect of logic block functionality
on area efficiency,” IEEE J. Solid-State Circuits, vol. 25, no. 5,
pp. 1217–1225, Oct. 1990.

[6] H. Parandeh-Afshar, H. Benbihi, D. Novo, and P. Ienne, “Rethinking
FPGAs: Elude the flexibility excess of LUTs with and-inverter cones,”
in Proc. ACM/SIGDA FPGA, 2012, pp. 119–128.

[7] J. Anderson and Q. Wang, “Improving logic density through synthesis-
inspired architecture,” in Proc. IEEE FPL, Aug./Sep. 2009, pp. 105–111.

[8] J. Anderson and Q. Wang, “Area-efficient FPGA logic elements:
Architecture and synthesis,” in Proc. ASP DAC, 2011, pp. 369–375.

[9] J. Cong, H. Huang, and X. Yuan, “Technology mapping and architecture
evalution for k/m-macrocell-based FPGAs,” ACM Trans. Design Autom.
Electron. Syst., vol. 10, no. 1, pp. 3–23, Jan. 2005.

[10] Y. Hu, S. Das, S. Trimberger, and L. He, “Design, synthesis and
evaluation of heterogeneous FPGA with mixed LUTs and macro-gates,”
in Proc. IEEE ICCAD, Nov. 2007, pp. 188–193.

[11] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 2,
pp. 203–215, Feb. 2007.

[12] K. Karplus, “Amap: A technology mapper for selector-based field-
programmable gate arrays,” in Proc. 28th ACM/IEE DAC, Jun. 1991,
pp. 244–247.

[13] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
rewriting a fresh look at combinational logic synthesis,” in Proc. 43rd
Annu. DAC, 2006, pp. 532–535.

[14] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool
for FPGA research,” in Proc. 7th Int. Workshop FPL, 1997, pp. 213–222.

[15] S. A. Chin and J. H. Anderson, “A case for hardened multiplexers in
FPGAs,” in Proc. FPT, Dec. 2013, pp. 42–49.

[16] M. Purnaprajna and P. Ienne, “A case for heterogeneous technology-
mapping: Soft versus hard multiplexers,” in Proc. IEEE 21st Annu. Int.
Symp. FCCM, Apr. 2013, pp. 53–56.

[17] (2011). Virtex-6 FPGA User Guide. [Online]. Available:
http://www.xilinx.com

[18] (2011). Stratix IV Device Handbook. [Online]. Available:
http://www.altera.com

[19] G. Lemieux and D. Lewis, “Using sparse crossbars within LUT,”
in Proc. 9th Int. Symp. ACM/SIGDA FPGA, 2001, pp. 59–68.

[20] C. Chiasson and V. Betz, “COFFE: Fully-automated transistor sizing for
FPGAs,” in Proc. Int. Conf. FPT, Dec. 2013, pp. 34–41.

[21] Predictive Technology Model. [Online]. Available: http://ptm.asu.edu/,
accessed 2015.

[22] Altera, private communication, Mar. 2014.
[23] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational

and sequential mapping with priority cuts,” in Proc. IEEE/ACM Int.
Conf. ICCAD, Nov. 2007, pp. 354–361.

[24] A. Yan, R. Cheng, and S. J. E. Wilton, “On the sensitivity of
FPGA architectural conclusions to experimental assumptions, tools,
and techniques,” in Proc. 10th Int. Symp. ACM/SIGDA FPGA, 2002,
pp. 147–156.

Stephen Alexander Chin received the
B.A.Sc. degree in electrical engineering and
the M.A.Sc. degree in computer engineering from
the University of Toronto, Toronto, ON, Canada,
in 2009 and 2013, respectively, where he is
currently pursuing the Ph.D. degree in computer
engineering.

His current research interests include
reconfigurable architectures and related computer-
aided design for silicon efficiency.

Jason Luu received the B.A.Sc. degree in computer
engineering from the University of Waterloo,
Waterloo, ON, Canada, in 2007, and the
M.A.Sc. and Ph.D. degrees from the University
of Toronto, Toronto, ON, Canada, in 2010 and 2014,
respectively.

He has contributed eight years to the open source
VTR project for field-programmable gate array
computer-aided design and architecture research.
He is currently a Senior Software Engineer
with Altera Inc., Toronto.

Safeen Huda received the B.A.Sc. and
M.A.Sc. degrees in electrical engineering from
the University of Toronto, Toronto, ON, Canada,
in 2009 and 2012, respectively, where he is
currently pursuing the Ph.D. degree in computer
engineering.

He has been involved in the development of
STT-MRAM at the device and circuit level. His
current research interests include the development
of circuits, architectures, and computer-aided design
flows for field-programmable gate arrays, with an

emphasis on increasing energy efficiency.
Mr. Huda has held the Natural Sciences and Engineering Research Council

of Canada Canada Graduate Scholarship and the University of Toronto
Fellowship.

Jason H. Anderson (S’96–M’05) received the
B.Sc. degree in computer engineering from the
University of Manitoba, Winnipeg, MB, Canada,
and the M.A.Sc. and Ph.D. degrees in electrical
and computer engineering from the University
of Toronto (U of T), Toronto, ON, Canada.

He joined the Field-Programmable Gate
Array (FPGA) Implementation Tools Group, Xilinx,
Inc., San Jose, CA, USA, in 1997, where he was
involved in placement, routing, and synthesis.
He is currently an Associate Professor with the

Department of Electrical and Computer Engineering, U of T, and holds the
Jeffrey Skoll Chair in Software Engineering. He has authored over 60 papers
in refereed conference proceedings and journals, and holds 26 issued
U.S. patents. His current research interests include computer-aided design,
architecture, and circuits for FPGAs.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

